Simulation of Infinitely Divisible Random Fields

نویسندگان

  • Wolfgang Karcher
  • Hans-Peter Scheffler
  • Evgeny Spodarev
چکیده

Abstract. Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible random fields.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

High Level Excursion Set Geometry for Non-gaussian Infinitely Divisible Random Fields

over high levels u. For a large class of such random fields we compute the u → ∞ asymptotic joint distribution of the numbers of critical points, of various types, of X in Au, conditional on Au being non-empty. This allows us, for example, to obtain the asymptotic conditional distribution of the Euler characteristic of the excursion set. In a significant departure from the Gaussian situation, t...

متن کامل

A general framework for simulation of fractional fields

Besides fractional Brownian motion most non-Gaussian fractional fields are obtained by integration of deterministic kernels with respect to a random infinitely divisible measure. In this paper, generalized shot noise series are used to obtain approximations of most of these fractional fields, including linear and harmonizable fractional stable fields. Almost sure and Lr-norm rates of convergenc...

متن کامل

A Unified Fading Model Using Infinitely Divisible Distributions

This paper proposes to unify fading distributions by modeling the magnitude-squared of the instantaneous channel gain as an infinitely divisible random variable. A random variable is said to be infinitely divisible, if it can be written as a sum of n ≥ 1 independent and identically distributed random variables, for each n. Infinitely divisible random variables have many interesting mathematical...

متن کامل

Sums of a Random Number of Random Variables and Their Approximations with Ν-accompanying Infinitely Divisible Laws

In this paper a general theory of a random number of random variables is constructed. A description of all random variables ν admitting an analog of the Gaussian distribution under ν-summation, that is, the summation of a random number ν of random terms, is given. The ν-infinitely divisible distributions are described for these ν-summations and finite estimates of the approximation of ν-sum dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2013