Simulation of Infinitely Divisible Random Fields
نویسندگان
چکیده
Abstract. Two methods to approximate infinitely divisible random fields are presented. The methods are based on approximating the kernel function in the spectral representation of such fields, leading to numerical integration of the respective integrals. Error bounds for the approximation error are derived and the approximations are used to simulate certain classes of infinitely divisible random fields.
منابع مشابه
Modeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملHigh Level Excursion Set Geometry for Non-gaussian Infinitely Divisible Random Fields
over high levels u. For a large class of such random fields we compute the u → ∞ asymptotic joint distribution of the numbers of critical points, of various types, of X in Au, conditional on Au being non-empty. This allows us, for example, to obtain the asymptotic conditional distribution of the Euler characteristic of the excursion set. In a significant departure from the Gaussian situation, t...
متن کاملA general framework for simulation of fractional fields
Besides fractional Brownian motion most non-Gaussian fractional fields are obtained by integration of deterministic kernels with respect to a random infinitely divisible measure. In this paper, generalized shot noise series are used to obtain approximations of most of these fractional fields, including linear and harmonizable fractional stable fields. Almost sure and Lr-norm rates of convergenc...
متن کاملA Unified Fading Model Using Infinitely Divisible Distributions
This paper proposes to unify fading distributions by modeling the magnitude-squared of the instantaneous channel gain as an infinitely divisible random variable. A random variable is said to be infinitely divisible, if it can be written as a sum of n ≥ 1 independent and identically distributed random variables, for each n. Infinitely divisible random variables have many interesting mathematical...
متن کاملSums of a Random Number of Random Variables and Their Approximations with Ν-accompanying Infinitely Divisible Laws
In this paper a general theory of a random number of random variables is constructed. A description of all random variables ν admitting an analog of the Gaussian distribution under ν-summation, that is, the summation of a random number ν of random terms, is given. The ν-infinitely divisible distributions are described for these ν-summations and finite estimates of the approximation of ν-sum dis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Communications in Statistics - Simulation and Computation
دوره 42 شماره
صفحات -
تاریخ انتشار 2013